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Do Search Engines Influence Media Piracy? Evidence from a 

Randomized Field Study 
 

Abstract 

There is an ongoing public policy debate regarding the role search engines can play in the fight 

against intellectual property theft. However, for any sensible policy discussion it must first be 

the case that changes in search results can influence consumers’ decisions to pirate or purchase 

legally. Surprisingly, there is little empirical evidence on this important policy issue. 

To analyze this question, we design a customized search engine and conduct experiments on a 

general population of users and on college-aged users where we manipulate the positions of 

infringing and legal sites in users’ search results. 

Our data show that users are more likely to purchase legally when legal links are promoted in 

search results, and users are more likely to pirate when pirate links are promoted. Together our 

results suggest that reducing the prominence of pirated links can be a viable policy option in the 

fight against intellectual property theft. 

  



 

 

1. Introduction 

While the Internet has created many new opportunities for media companies to reach 

consumers through digital channels, it has also given rise to widespread media piracy. The 

potential impact of piracy on sales and overall social welfare has given rise to a variety of anti-

piracy efforts initiated by governments and industry participants. However, these efforts are 

complicated by the fact that piracy is a multifaceted phenomenon with multiple stakeholders. 

Specifically, Internet intermediaries such as Internet Service Providers (ISPs), web-hosting 

services, and search engines all play a role in delivering information and content to the end user. 

While end users are ultimately responsible for their content consumption, many in the creative 

industries argue that Internet intermediaries should play a more active role in reducing piracy. 

One active policy question is whether search engines can, and should, play a role in the fight 

against piracy by reducing the prominence of pirated links in search results displayed to users. 

Not surprisingly, this issue has strong views on both sides. Search engines argue that they are 

already doing a great deal to stop piracy. For example, in September 2013, Google released a 

report titled “How Google Fights Piracy”1 which detailed Google’s efforts to reduce piracy by 

removing infringing links from their search results based on notices sent by copyright owners. This 

report also notes that in August 2012 Google started taking valid copyright removal notices into 

account when ranking sites in search results.2 In fact, Google’s “Transparency Report” identifies 

more than 25 million copyright removal notices that they responded to in June 2012, affecting 

nearly 40,000 unique Internet domains.3  

At the same time, many content owners argue that search engines’ efforts have been ineffective 

and that more is needed. For example, a recent study funded by the MPAA4 analyzed the role that 

search results play in the discovery of television and movie content, arguing that current efforts by 

search engines to reduce the availability of pirated content are insufficient and that most of the 

search queries that result in viewing infringing links do not contain keywords that indicate specific 

intent to view this content illegally.  

                                                           
1
 How Google Fights Piracy. 2013. 

(https://docs.google.com/file/d/0BwxyRPFduTN2dVFqYml5UENUeUE/edit) 
2
 See also Google’s press release on this program: http://insidesearch.blogspot.com/2012/08/an-update-

to-our-search-algorithms.html  
3
 See http://www.google.com/transparencyreport/removals/copyright/  

4
 Understanding the Role of Search in Online Piracy. Prepared by Millward Brown Digital for the MPAA. 

(http://www.mpaa.org/resources/38bc8dba-fe31-4a93-a867-97955ab8a357.pdf) 

https://docs.google.com/file/d/0BwxyRPFduTN2dVFqYml5UENUeUE/edit
http://insidesearch.blogspot.com/2012/08/an-update-to-our-search-algorithms.html
http://insidesearch.blogspot.com/2012/08/an-update-to-our-search-algorithms.html
http://www.google.com/transparencyreport/removals/copyright/
http://www.mpaa.org/resources/38bc8dba-fe31-4a93-a867-97955ab8a357.pdf


 

 

The key question though is whether pirate and legal results are sufficiently close substitutes in the 

eyes of consumers that making one harder to find in search results will increase consumption of 

the other. In an editorial commenting on the RIAA’s desire for Google to make piracy harder to 

find, the technology blog Techdirt summarizes the view of many in the technology industries on 

this question: 

“The RIAA might not like it, but the simple fact is that when people are searching for 

[artist] [track] mp3 and [artist] [track] download, chances are they’re not looking to buy, 

but to download for free. … Even if Google magically did show them Apple, Amazon and 

Emusic as the top results for every [artist] [track] mp3 and [artist] [track] download, the 

people doing those searches wouldn’t go there, because they’re not looking to buy.”5 

In this view if a user is looking for infringing content, they have already made up their mind about 

whether to consume legally, and minor changes in search results will not change that behavior. 

Thus, while it is well known that when users are choosing between close subsitutes changing the 

order of search results can change what sites users select, in our setting pirate and legal links may 

be sufficiently differentiated that users looking for pirate content will not substitute toward legal 

links and vice versa. In the words of the technology blog, ExtremeTech:  

“In general, if someone wants to pirate something, they’re going to pirate it, even if they 

have to click through a couple of pages of search results.”6 

Thus, while many copyright holders have called for Google and other major search engines to 

reduce the prominence of pirate links in search results, a fundamental question remains: Are 

users’ media consumption decisions for infringing versus legitimate sources influenced by search 

results? In particular, are users more or less likely to consume content from an infringing source 

if search results increase or decrease their exposure to infringing content? If anything, these 

                                                           
5
 “RIAA: Google Isn’t Trying Hard Enough To Make Piracy Disappear From the Internet,” Mike Masnick, 

February 21, 2013. Available from https://www.techdirt.com/articles/20130221/07560622055, last 
accessed November 24, 2014. Italics in original text.  
6
 “Google finally decides to demote ‘notorious’ piracy sites in search results,” Sebastian Anthony, October 

20, 2014. Available from http://www.extremetech.com/extreme/192471-g, last accessed November 24, 
2014. 

https://www.techdirt.com/articles/20130221/07560622055
http://www.extremetech.com/extreme/192471-g


 

 

questions have become more important recently, given Google’s recently announced changes to 

its search algorithm to more aggressively demote pirated links.7  

However, despite the importance of these questions for both managers and policymakers, we are 

aware of no studies that empirically analyze the role of search results on the consumption of legal 

versus infringing content. One reason for the few studies in this area may be that assigning 

causation is tricky in this context. This is because, by design, the top results are also likely to be 

the most “relevant” results to the user. If a user is searching for infringing content and sees 

infringing results listed first, it is impossible to disentangle whether she clicks on that content 

because of her interest or because of its placement. In short, a user’s desire to look for 

particular content shapes their search terms and subsequent behavior, making it impossible to 

use observational or archival data alone to show whether search results influence user choices. 

In this paper, we address this methodological challenge through randomized field experiments, 

using the experimental design to avoid contamination due to user intent. We then implement 

this design in two experiments. The first experiment uses participants drawn from a 

representative panel of the U.S. population, and the second uses a panel of college-aged 

participants. In both cases, the participants are recruited through an independent company 

maintaining large survey panels. We expose these users to a potential task of finding a movie 

through online channels, and encourage users to use our custom-built search engine in place of 

the search engine they would normally use (e.g., Bing, Google).  

In the first experiment (representative panel), our search engine displays results to users in one 

of three randomly assigned conditions: in the control condition users see the same results that 

would be displayed from a major search engine, in the first treatment condition infringing links 

are artificially promoted in the search results, and in the second treatment condition legal links 

are artificially promoted in the search results. The second experiment (younger users) adds two 

additional treatment conditions to test milder legal and milder infringing search manipulations. 

We avoid the user intent fallacy by randomly assigning users to one of these treatment conditions. 

We also record and examine their search choices through our interface, providing additional detail 

on their behavior within the experiment. Finally, we ask them to complete a questionnaire at the 

                                                           
7
 See for example http://googlepublicpolicy.blogspot.com/2014/10/continued-progress-on-fighting-

piracy.html, last accessed December 9, 2014. 

http://googlepublicpolicy.blogspot.com/2014/10/continued-progress-on-fighting-piracy.html
http://googlepublicpolicy.blogspot.com/2014/10/continued-progress-on-fighting-piracy.html


 

 

end of the experiment to measure their attitudes regarding piracy. Our results suggest that the 

prominence of search results can play an important role in users’ subsequent choices about 

whether to pirate content or consume through legal channels. In the control condition about 80% 

of users choose to buy the product legally versus 94% who choose to purchase legally in the legal 

treatment condition and 56% in the infringing treatment condition.8 

We see similar results in a second experiment with a college-aged population (18-24 year old 

users): 62% of users in the control condition choose to purchase the product legally, versus 92% in 

the legal treatment condition and 39% in the infringing treatment condition. Our second 

experiment also shows that stronger treatments (in terms of number of pirated or legal links) lead 

to stronger outcomes: In the “mild” legal treatment the number of purchases drops to 76% (versus 

92% in the regular legal treatment), and in the “mild” infringing treatment the number of 

purchases rises to 48% (from 39%). 

Our data also allow us to infer user intentions from their initial search terms. When we classify 

user intentions based on the content of their initial search terms we find that users who initially 

express an intention to consume legally are less likely to do so in the infringing treatment 

condition than in other conditions, and conversely that users who initially express an intention 

to consume pirated content are less likely to do so in the legal treatment condition than in the 

other conditions. 

Together, our results suggest that user behavor is elastic to search results when it comes to media 

consumption decisions, and that reducing the prominence of pirated links in search results can be 

a viable strategy for fighting intellectual property theft for both a general population of users and 

for younger (college-aged) users and for both “undecided” users and users with a pre-existing 

preference for legal/pirated content. 

2. Related Literature 

Our research primarily relates to studies in the economics and information systems literatures 

analyzing the impact of piracy on sales and analyzing the effectiveness of anti-piracy measures. 

Within these literatures, the vast majority of papers find that piracy harms sales. For example, Rob 

and Waldfogel (2006) show that overall piracy reduced per capita expenditures on music by 

                                                           
8
 As we note in more detail below, our experiment is designed to identify relative differences between the 

two treatment conditions and the control condition (as opposed to absolute levels of piracy). 



 

 

about 20% and Zentner (2006) shows that piracy reduced music sales by about 7.8% in 2002 (for 

reviews of the literature, see Liebowitz (2008), Oberholzer-Gee and Strumpf (2010), and Danaher, 

Smith, and Telang (2014)). 

With piracy’s impact on sales well established in the literature, several recent papers have 

analyzed the effectiveness of regulatory and industry-led efforts to reverse the impact of piracy. 

These papers generally find that making content available in legal digital channels reduces the 

incidence of piracy (see, for example Danaher et al. (2010) and Danaher et al. (2014)) and that 

anti-piracy policies targeting the demand-side of piracy (e.g., the HADOPI anti-piracy law in France 

as studied by Danaher et al. (2014)) and the supply-side of piracy (e.g., the shutdown of 

Megaupload studied by Danaher and Smith (2014). Beyond these legislative interventions, 

Reimers (2014) shows that industry-led notice and takedown strategies for eBooks can be 

effective at increasing legal sales, and Bhattacharjee et al. (2006) find that RIAA lawsuits lowered 

levels of file sharing, with a much greater impact on high-level sharers. 

Another important question is whether piracy impacts social welfare. Here the results are less 

conclusive. On one hand, Abhishek, Telang, and Zhang (2013)) use analytical models to show that 

firms’ incentives to invest decrease in the presence of piracy, especially when users do not 

readily migrate back to legal channels. Further, using the Indian motion Picture Industry, Telang 

and Waldfogel (2014) find that media piracy had a strong negative impact on movie production. 

However, Waldfogel (2012) finds that the overall impact of technological change (including 

piracy) from 1980 to 2010 did not reduce the quantity or the overall quality of music released. 

Our paper extends these results by studying anti-piracy efforts in the context of search results, and 

specifically whether reducing the prominence of pirated links in search results can be effective at 

changing user behavior and user satisfaction with search results.  

In addition to the piracy literature, our research relates to the academic literature on consumer 

behavior at search engines and overall consumer search costs online. Previous studies of 

consumer behavior at search engines examined how the prominence of search results influence 

user behavior, showing that the position of search results can have a significant impact on click-

through rates and conversion rates for both sponsored search results (e.g., Yang and Ghose 2010, 

Agarwal et al. 2011) and organic search results (e.g., Baye et al. 2012).  



 

 

Specifically in the context of organic search results, Brooks (2004) showed that searchers are more 

likely to click links that are placed higher in the results listing. This is because the top results are 

perceived to be more relevant and because the search costs of exploring results with lower rank is 

relatively high. Similarly, an eye tracking experiment performed by Pan et al. (2007) revealed that 

college students have substantial trust in Google's ability to rank results by their true relevance, 

such that users’ decisions are strongly biased towards links higher in position even if the abstracts 

themselves are less relevant. Further, using click-through observational data, Chesnes, Dai, and Jin 

(2014) study how the ban of non-NABP-certified pharmacies from Google’s sponsored search 

listings affects consumer search on the Internet, finding that non-NABP-certified pharmacies 

receive fewer clicks after the ban than they did before the ban.  

An important difference between these studies and our study is that our setting analyzes how 

search costs affect users’ substitution pattern between legal content with infringing content. Thus 

our study relates to an active policy question, while also addressing a setting where the tradeoffs 

between different (legal and pirate) links could be quite high. Unlike most other studies which 

focus on organic search results or sponsored links, the perceived difference between legal content 

and infringing content could be large, particularly for consumers who may have a stated 

preference for one type of content or the other. 

3. Experiment 1 — General Population, 2 Treatment Conditions 

Experimental Design 

In this experiment we utilize a custom-built search engine to test the impact of search results on 

media consumption choices among the general population of Internet users. The participants 

for the experiment were recruited from the general population by an independent company 

maintaining a large survey panel. The study was performed online and consisted of three parts: 

(1) a screening phase in which the participants were asked to choose a movie they wish to 

acquire; (2) a search phase in which the participants were asked to use our custom search 

engine to search for a source to acquire the movie; and (3) a post-experiment questionnaire.  



 

 

 

Figure 1: Screening Question. The list of movies also included data on the Genre of the movie, its storyline, 
average reviewers rating, and its release date to the movie cinemas. These additional data were taken 

from IMDB.com, and the movies were chosen from IMDB’s weekly top DVDs lists during the months prior 
to the experiment. 

During the screening phase the participants were asked to choose a movie they wish to watch 

from a list of 50 alternatives (see Figure 1). We asked users to select a movie from a specific list 

of movies in advance to make sure that our manipulation conditions could be implemented. We 

asked users to select a specific movie they were interested in (as opposed to assigning them a 

movie) to ensure that the users were motivated to find a movie they wished to view. Consistent 

with our goal of observing user behavior in search for movies, we excluded from the experiment 

any participants who stated that they are not interested in watching any of the movies in our 

list.  

Participants who chose a movie were given a $20 prepaid virtual Visa card as compensation for 

their time in completing the experiment. The payment details were given to the participants 

before they were presented with the task in order for them to think of the money as if it was 

their own. The money could be spent however the participant chose and could be retained after 

the experiment (i.e., the money was not limited for use in purchasing the movie they selected, 

and could be used for purchases in any store that accepts Visa cards).  



 

 

The participants were then given a task to search for a source from which they would like to 

acquire (download, stream, purchase, or rent) the movie. The participants were not told that we 

were examining their piracy behavior. Instead, the experimental instructions stated that the 

user was participating in an experiment to test the effectiveness of our search engine. We 

highlighted that our search engine was designed to efficiently search for movie related content 

(see Figure 2). Therefore, they were instructed to use our search engine in place of Google, Bing 

or other search engines when they searched for content. The instructions also stated that if the 

participant already had a specific website in mind to obtain the movie, they could go directly to 

that site after initially trying to search for it using our search engine. The participants were able 

to keep the movie they acquired, and keep any money left over after the task was completed. 

We also stated that their identity is unknown to us and their behavior cannot be traced back to 

them. 

 

Figure 2: Experiment Task. 

Before the experiment started, each participant was randomly assigned to one of three search 

engine conditions: no manipulation, non-infringing (legal) content manipulation, or infringing 

(piracy) content manipulation. 

 Condition 1 – No manipulation: In the control condition, the first 100 search results were 

retrieved from a major search engine and were displayed to the searcher without any 

manipulations. The search results consist of 10 pages with 10 search results on each page. 

 Condition 2 – Legal content manipulation: In the legal treatment condition, the first 100 

search results were retrieved from a major search engine and were displayed to the searcher 

such that the first 3 results on each of the 10 pages were replaced (if necessary) with results 

that offer legal options to rent/purchase the movie. Additionally, no infringing links appeared 

on the first page of the search results and infringing links that would have appeared in these 



 

 

positions were replaced with legal options such as Amazon.com or iTunes. Neutral results in 

positions 4-10 (such as IMDB.com, Wikipedia.com, etc.) were left unchanged. See Figure 3 for 

sample search results in the legal treatment condition. 

 Condition 3 – Piracy content manipulation: In the piracy treatment condition, the first 100 

search results were retrieved from the major search engine and were displayed to the 

searcher such that the first 3 results on each of the 10 pages are replaced (if necessary) with 

results that offer infringing (piracy) options to download/stream the movie. Additionally, no 

legal options appeared on the first page of the search results and any legal links that would 

have appeared in these positions were replaced with piracy options such as piratebay.com 

and torrentz.com. Neutral results in positions 4-10 (such as IMDB.com, Wikipedia.com, etc.) 

were left unchanged. 

 

Figure 3: Example Search Results for the Legal Content Manipulation Condition. 

After the participants completed the experiment task, they were required to complete a post-

experiment survey. In the questionnaire, they were asked about the source from which they 

acquired the movie, its price ($0 if the movie was acquired from an infringing source), and they 

were asked several demographic questions and questions about their media consumption 

preferences (see Figure 4 for sample post-experiment questions). 



 

 

 

Figure 4: Post-Experiment Questionnaire. 

It is important to note that we can only directly observe user behavior while they are on our 

search engine: we do not observe their behavior outside of the search engine. Thus, our 

observation of where the user obtained their content is based on their survey answers. While this 

may introduce some recall bias, the degree of recall bias should not vary across the control and 

treatment conditions and the survey occurs immediately after the participant obtains the content, 

significantly reducing the overall possibility of recall bias. It is also possible, based on prior studies 

that found that survey respondents are likely to under-report socially undesirable activities, that 

participants who choose a pirated option could be less likely to reveal that in a survey than other 

users are (Cannell et al. 1965; Warner 1978; Wyner 1980; and Means et al. 1992). However, again 

the propensity to misreport should not vary across the control and treatment conditions and any 

bias would lead to an underestimate of the degree that infringing links induce more piracy. We 

also note that we can use observed search and clicking behavior to validate a user’s survey 

answers (including in some cases verifying price). In the results section we show that the users’ 

survey responses were very consistent with their observed behavior. 

In order to make sure that participants understood the task correctly, we included in our 

analysis only those users who claimed the $20 virtual Visa card, used our custom-built search 

engine, and reported the source from which they acquired the movie and its price. 

Approximately 1,000 participants were invited to participate in the study. Of these participants, 

770 met the initial qualifications for participating in the study by expressing an interesting in 

watching one of the movies on our list. These participants were invited to participate in our 



 

 

study and 632 of them logged into the system and were presented with the task details. Out of 

these participants, 235 completed the task as instructed, and 196 (66 men, 130 women) 

qualified for our study by also completing the post-experiment questionnaire. The dropout rates 

across each of the different stages described above are not statistically different across 

experimental conditions.  

Prior to analyzing the results of the experiment we confirmed that the distribution of user 

characteristics (demographic characteristics, attitudes towards piracy) is similar across the 

control and treatment groups. The average values for each experimental condition are 

presented in Table 1. Chi squared tests show that there are no statistically significant differences 

in demographic characteristics or attitudes toward piracy between the experimental conditions 

(p-value > 0.05). This confirms that our randomization worked as intended. 

 
% 

Women 

Average 
age 

group 

Average 
household 

size 

Average 
household 

income group 

Average attitude 
against piracy 
(Likert scale) 

% 
Downloads 
infringing 

Condition 1: No 

manipulation 
70.0% 4.20 2.85 2.82 4.60 33.3% 

Condition 2: Legal 

content 

manipulation 

59.2% 4.30 2.85 2.77 4.75 39.4% 

Condition 3: 

Infringing 

content 

manipulation 

64.6% 3.97 2.68 3.02 4.58 44.6% 

Table 1: Between-Conditions Comparison of demographic characteristics and attitude towards piracy. 
There are 7 possible age group values in the questionnaire: 1 (18-21), 2 (22-25), …, 7 (61 and over); 10 
possible household size values: 1, 2, …, 9, 10 or more; and 6 possible household income group values: 1 

(less than $30,000), 2 ($30,000 - $50,000), …, 6 (over $150,000). 

To further verify similarity in pre-existing attitudes toward piracy, we tested whether the 

participants’ initial intent for pirate or legal content is similar across the three experimental 

conditions. We did this by classifying their initial search terms reflected neutral, legal, or 

infringing intent. We did this classification by analyzing the degree to which pirate or legal links 

were present in the (unmodified) search results for queries commonly issued by our users. We 

discovered that search terms using only the movie’s name contained almost exclusively 

“neutral” results (i.e., results that neither promote legal or pirate sources), and thus we classify 

these searches as “neutral.” However, when search terms included the words “buy,” “rent,” or 



 

 

“purchase” the search results contained 38% more legal links than pirate links, and when the 

search term contained a legal domain name (e.g., amazon), the search results contained 78% 

more legal links than pirate links. Thus, we classify these search terms as representing “legal” 

intent.  

Conversely, when search terms included the words “download,” “stream,” or “full movie” there 

were 33% more pirate links in the search results than legal links, and including the domain name 

of an infringing site (e.g., piratebay) resulted in search results that included 65% more pirate 

links than legal links. Because of this, we classify these search terms as representing “infringing” 

intent. 

We then classify intent based on the initial intent reflected in each user’s search terms (or 

“neutral” if the user did not express intent in their searches). As above, reassuringly, the 

distributions are not statistically different across the control and treatment conditions (see 

Table 2 for frequencies across conditions). 

 N Neutral Searches Legal Intent Infringing Intent 

Condition 1: No 

manipulation 
60 17 31 12 

Condition 2: Legal content 

manipulation 
68 28 23 17 

Condition 3: Infringing 

content manipulation 
65 21 33 11 

Table 2: Between-Conditions Comparison of the initial intent  
(based on the first keyword each user entered). 

Finally, we note that while the characteristics of users who participated in the experiment were 

similar across the control and treatment conditions, it is possible that our participant pool skews 

toward more media or tech savviness than the general population. As such, in the results below 

one should focus on the relative levels of sales/piracy between the control and treatment 

conditions as opposed to the absolute levels within any particular condition. 

Results 

Table 3 compares the proportion of legal purchases (and the average price of a legal purchase) 

across the different treatment conditions. This table shows that in the control condition, where 

the search results are not manipulated, 80% of our participants chose to acquire the movie 

through a legal channel (and the remaining 20% consumed through a pirated channel). Relative 



 

 

to this baseline, participants in the legal content treatment condition were significantly more 

likely to acquire the movie from a legal channel (P = 94.37%, SD = 23.22%) than were participants 

in the baseline condition (P = 80%, SD = 40.34%). A t-test (t(121) = 2.85, p < .01) confirms that 

these differences are statistically significant.  

Conversely, the results show that participants in the infringing content treatment condition were 

significantly less likely to acquire content from a legal channel (P = 56.92%, SD = 49.90%) relative 

to the baseline condition (P = 80%, SD = 40.34%). Again, a t-test confirms that the differences are 

statistically significant (t(91) = 2.43, p < .01). 

 n # Legal option % Legal option Average price 

(conditional on acquiring 

a legal copy) 

Condition 1: No manipulation 60 48 80.0% $9.80 

Condition 2: Legal content 

manipulation 71 67 94.4% $9.89 

Condition 3: Infringing 

content manipulation 65 37 56.9% $9.93 

Table 3: Between-Conditions Comparison of the Proportion of Purchases Made from Non-Infringing 
Websites. 

These results, and the statistically significant differences across groups, strongly suggest that 

reducing the prominence of pirated content in search results can have a significant impact on 

user behavior, and thus is a viable anti-piracy strategy. This result may be initially surprising 

given that our treatment doesn’t remove all pirated or legal links, just the ones appearing on the 

first page and on the first three positions on subsequent pages. However, the fact that our users 

are willing to substitute between legal and infringing options with even minor changes in the 

rank of these options suggests that users in our sample are relatively willing to substitute 

between legal and infringing consumption channels. 

To further explore user’s willingness to substitute between channels, we analyze whether 

changing the prominence of pirated links can affect the behavior of users who state an initial 

preference for legal or pirated content. This is important because these users might be 

considered among the most “committed” to consume through legal or pirated channels, and 

thus among the least likely to change their behavior. 



 

 

We do this by following the methodology described above (see Table 2 and surrounding text) to 

classify each user’s “intent” based on whether their initial searches express a preference for 

legal or illegal content. In Table 4, we compare how the purchase likelihood for users with 

pirated or legal intent varies across the different treatment groups. 

Each cell in the table reports the number of users observed in a particular experimental and 

“initial intent” condition, the number of those users who made a legal purchase, and the 

proportion of legal purchases. For example, Table 4 shows that 33% (4 of the 12) “control 

group” users who initially expressed intent to consume through infringing channels, ultimately 

purchased through a legal channel. 

First search term  Control group  Legal content manipulation  Infringing content manipulation  

Legal intent  
31/31 
(100%) 

22/23 
(96%) 

24/33 
(73%) 

Infringing intent  
4/12 
(33%) 

15/17 
(88%) 

5/11 
(45%) 

Table 4: Legal purchase rates across treatment conditions and initial intent 

This table shows that users who initially express intent to consume legally are significantly less 

likely to do so when placed in the infringing content manipulation (73%) than in either the legal 

(96%) or control (100%) conditions (t-tests: t(48) = 2.55, p < 0.01; t(32) = 3.46, p < 0.01, 

respectively). Likewise, users who initially express intent to consume infringing (pirated) content 

are significantly more likely to purchase legally in the legal content manipulation (88%) than in 

the infringing (45%) or control (33%) conditions (t-tests: t(15) = 2.42, p < 0.05; t(18) = -3.36, p < 

0.01, respectively). These results suggest that even users with an initial preference for pirate or 

legal channels have a relatively high substitutability between channels based on the ranking of 

search results. 

While the tests reported above are sufficient to determine differences between the control and 

treatment groups based on our experimental manipulations, we can also use a logistic 

regression model to control for and analyze differences between groups based on observed 

characteristics. Specifically, we use the following logistic regression model to control for 

observable participant characteristics: 



 

 

(3) 𝑙𝑜𝑔
𝑃𝑅 𝐿𝑒𝑔𝑎𝑙𝑖 

1 − 𝑃𝑅 𝐿𝑒𝑔𝑎𝑙𝑖 

= 𝛼 + 𝛽1 ∙ NIi + 𝛽2 ∙ Ii + 𝛽𝑗 ∙

5

𝑗=3

DCi
j

+ 𝛽𝑗 ∙

8

𝑗=6

MCPi
j

+ 𝛽𝑗 ∙

10

𝑗=9

ATPi
j

+ 𝛽11

∙ intent + 𝜀𝑖  

where, 𝐿𝑒𝑔𝑎𝑙𝑖  denotes whether the movie was acquired from a non-infringing source; 𝑁𝐼𝑖  is an 

indicator variable denoting whether participant 𝑖 was treated with the non-infringing search 

condition; 𝐼𝑖  is an indicator variable denoting whether participant 𝑖 was treated with the 

infringing search condition;  𝛽𝑗 ∙
5
𝑗=3 DCi

j
 includes the following demographic characteristics: 

Gender (an indicator variable for whether the participant was a woman), Age <= 40, Household 

size, and Income;  𝛽𝑗 ∙
8
𝑗=6 MCPi

j
 includes the following media consumption preferences: Time 

online (the average hours spent online per day), Acquires movies online (whether the 

participant ever downloaded or streamed a movie, including pirated movies), and Movies per 

year (the number of movies the participant watched in the last 12 months);  𝛽𝑗 ∙
10
𝑗=9 ATPi

j  

includes the following attitude towards piracy variables: Against piracy (on a 6-point Likert Scale 

ranging from (1) ‘There is nothing wrong with it’ to (6) ‘It is the same as stealing’), Downloads 

infringing (whether the participant indicated that that s/he uses torrents or other free online 

downloads/streaming/file-sharing); and 𝑁𝑜𝑛 − 𝑖𝑛𝑓𝑟𝑖𝑛𝑔𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑛𝑡𝑖  (whether the first search 

term that the user entered indicate that his/her intent is to acquire a legal copy of the). We 

present the results of this model in Table 5 below. 

These results are consistent with our means comparison results above in that the treatment 

variables are statistically different from the control condition and that they have the expected 

sign (the legal treatment condition increases the likelihood of purchasing legally and the 

infringing treatment condition decreases the likelihood of purchasing legally). These results also 

confirm, as one would expect, that participants who consumed infringing content in the past are 

less likely to purchase the movie legally and that those who use a search term that implies legal 

intent are more likely to purchase legally. 

In the next section, we report the results of a similar experiment that uses college-aged 

participants and varies the intensity of the search manipulations. 



 

 

 
(1) (2) (3) (4) (5) 

Dependent variable: 
Acquired legally 

Basic 
Model 

Including 
Demographic 

Characteristics  

Including 
Media 

Consumption 
Preferences 

Including 
Attitude 
Towards 

Piracy 

Including 
Intent to 
Acquire 
Legally 

Constant 1.386*** 1.637** -0.333 0.148 0.0575 

 
(0.323) (0.663) (1.288) (1.511) (1.533) 

Non-infringing mode 1.432** 1.458** 1.606** 1.855*** 1.905*** 

 
(0.608) (0.613) (0.634) (0.673) (0.685) 

Infringing mode -1.108*** -1.152*** -1.232*** -1.235** -1.261** 

 
(0.409) (0.422) (0.438) (0.507) (0.516) 

Woman 
 

-0.00896 0.0163 0.0167 0.0421 

  
(0.406) (0.416) (0.482) (0.491) 

Age <= 40 
 

-0.603 -0.744* -0.669 -0.492 

  
(0.398) (0.436) (0.491) (0.500) 

Household size 
 

-0.134 -0.216 -0.0772 -0.106 

  
(0.146) (0.151) (0.186) (0.193) 

Income 
 

0.126 0.132 -0.0719 -0.0333 

  
(0.142) (0.147) (0.166) (0.173) 

Time online 
  

0.0287 0.235 0.169 

   
(0.213) (0.249) (0.250) 

Acquires movies online 
  

0.191 0.453* 0.412 

   
(0.231) (0.275) (0.282) 

Movies per year 
  

0.409** 0.229 0.255 

   
(0.178) (0.210) (0.213) 

Against piracy 
   

0.554 0.404 

    
(0.486) (0.504) 

Downloads infringing 
   

-2.424*** -2.410*** 

    
(0.516) (0.523) 

Non-infringing intent 
   

 1.266** 

    
 (0.621) 

Number of obs. 196 196 196 196 196 

Pseudo R2       0.1392 0.1611 0.1933 0. 3529 0. 3758 

Table 5: Logistic regressions results 

Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

4. Experiment 2 — Younger Audience, 4 Treatment Conditions 

Experimental Design 

We obtained participants for the second experiment from the same independent survey panel 

company used in Experiment 1. However, in experiment 2, we limited participation to users who 

were 18-25 years old and who were college students at the time of the experiment or who had 



 

 

at least 2 years of college education. We did this to analyze the degree to which our results 

extend to a college-aged population, a population that tends to be disproportionately more 

likely to pirate than other demographic segments are (e.g., Rob and Waldfogel 2007, Vandiver et 

al 2012). 

The second difference between our first and second experiments is that our second experiment 

adds two additional treatment conditions. We retain our original “legal” and “infringing” 

manipulations that, respectively, remove all pirated or legal options from the first page of 

results and from the first three results displayed on subsequent pages. However, in experiment 

2 we add two additional manipulations that soften the impact of these manipulations by only 

changing the top three results on the first page and making no other changes to the displayed 

results. Specifically, the two additional treatment conditions are: 

 Condition 2a – Mild legal content manipulation: The first 100 search results were retrieved 

from a major search engine and were displayed to the searcher such that the first 3 results on 

the first page (and only the first page) were replaced (if necessary) with results that offer legal 

options to rent/purchase the movie. 

 Condition 3a – Mild piracy content manipulation: The first 100 search results were retrieved 

from the major search engine and were displayed to the searcher such that the first 3 results 

on the first page (and only the first page) were replaced (if necessary) with results that offer 

infringing (piracy) options to download/stream the movie. 

Data and Results 

Following our approach in experiment 1, in our second experiment we included in our analysis 

only those users who claimed the $20 virtual Visa card, used our custom-built search engine for 

at least one search, and reported the source from which they acquired the movie and how much 

they paid for it. A total of 234 participants (86 men, 148 women) qualified for our study.9 In 

Table 6 we report average statistics for these participants across the manipulation conditions. 

                                                           
9
 Approximately 650 participants that were invited to participate in the study and expressed an interest in 

watching one of the movies in the study. A total of 550 participants logged into the system and were 
presented with the task details. Out of these participants 270 completed the experimental task as 
instructed, and of these participants 234 (86 men, 148 women) qualified for our study by also completing 
the post-experiment questionnaire. The dropout rates in each of the different stages described above are 
not statistically different across experimental conditions. 



 

 

These statistics show that the distribution of demographic characteristics and attitudes towards 

piracy are similar across the control and treatment groups, as one would expect given the 

experimental assignment. 

 
% 

Women 

Average 
age 

group 

Average 
household 

size 

Average 
household 

income group 

Average attitude 
against piracy 
(Likert scale) 

% 
Downloads 
infringing 

Condition 1: No 

manipulation 
57.14% 1.69 3.02 2.60 3.40 80.95% 

Condition 2a: Mild 

legal content 

manipulation 

73.47% 1.71 3.18 2.35 3.73 69.39% 

Condition 2: Legal 
content 
manipulation 

62.50% 1.75 2.79 2.13 3.85 62.50% 

Condition 3a: Mild 

infringing 

content 

manipulation 

54.55% 1.68 3.41 2.18 3.66 75.00% 

Condition 3: 
Infringing 
content 
manipulation 

66.67% 1.73 3.29 2.31 3.76 64.71% 

Table 6: Between-Conditions Comparison of demographic characteristics and attitude towards piracy. 
There are 7 possible age group values in the questionnaire: 1 (18-21), 2 (22-25), …, 7 (61 and over); 10 
possible household size values: 1, 2, …, 9, 10 or more; and 6 possible household income group values: 1 

(less than $30,000), 2 ($30,000 - $50,000), …, 6 (over $150,000). 

As in experiment 1, we also compare the initial search intent expressed by users across the 

different treatment conditions (Table 7), finding no significant differences in expressed intent 

across conditions. 



 

 

 N Neutral Searches Legal Intent Infringing Intent 

Condition 1: No 
manipulation 

42 6 23 13 

Condition 2a: Mild legal 

content manipulation 
49 16 19 14 

Condition 2: Legal content 
manipulation 

48 14 20 14 

Condition 3a: Mild 

infringing content 

manipulation 

44 11 18 15 

Condition 3: Infringing 

content manipulation 
51 15 27 9 

Table 7: Between-Conditions Comparison of the initial intent  
(based on the first keyword each user entered). 

Next, in Table 8 we compare the proportion of legal purchases (and the resulting average price 

of a legal purchase) made by participants in each of the experimental conditions. This table 

shows that in the control condition, where the search results were not manipulated, 61.9% of 

the participants chose to acquire the movie through a legal channel (and the remaining 38.1% 

consumed through a pirated channel). Note that in the general population sample, we found 

that 80% of the participants in the control condition acquired the movie through a legal channel. 

Comparing this figure to the 61.9% figure above suggests that, as expected, younger users are 

less likely to acquire content through legal channels than are users in the general population. 

Relative to the proportion of legal purchases in the control condition, Table 8 shows that 

participants who were assigned to the mild legal content treatment condition were more likely to 

acquire the movie from a legal channel (P = 75.5%, SD = 43.4%) than were participants in the 

baseline condition (P = 61.9%, SD = 43.4%), a difference that is statistically significant (t(83) = -1.39, 

p < 0.1). We also see that the effect of the more intense legal content manipulation (which is the 

same the legal content manipulation used in study 1) resulted in a statistically higher proportion of 

legal purchases compared to the milder legal manipulation condition (P = 91.7%, SD = 27.9%, t-

test: t(63) = -2.18, p < .05).  

Conversely, the results show that participants in the mild infringing condition were significantly 

less likely to acquire content from a legal channel (P = 47.7%, SD = 50.5%) relative to the baseline 

condition (P = 61.9%, SD = 43.4%; t-test: t(84) = 1.32, p < 0.1). Likewise, the effect of the more 

intense infringing content manipulation (which is the same as the infringing content manipulation 

used in study 1) is stronger than that of the mild treatment, resulting in a directionally lower 



 

 

proportion of legal purchases compared to the baseline condition (P = 38.2%, SD = 49%). However, 

this difference is not statistically significant (t-test: t(90) = 0.83, p > 0.1), possibly due to the 

relatively small sample size. 

 n # Legal option % Legal option Average price 

(conditional on acquiring 

a legal copy) 

Condition 1: No manipulation 42 26 61.9% $12.26 
Condition 2a: Mild legal 

content manipulation 49 37 75.5% $9.57 
Condition 2: Legal content 

manipulation 48 44 91.7% $11.84 
Condition 3a: Mild infringing 

content manipulation 44 21 47.7% $12.76 
Condition 3: Infringing 

content manipulation 51 20 39.2% $14.75 

Table 8: Between-Conditions Comparison of the Proportion of Purchases Made from Non-Infringing 
Websites in Study 2. 

These results not only suggest that increased search costs associated with finding pirated 

content can have a significant impact on user behavior even for younger users; they also suggest 

that the effect varies with the intensity of the treatment, and is present even for relatively 

minor reductions in search costs. 

  
Legal content 
manipulation 

Infringing content 
manipulation 

First search 
term 

Control Mild Intense Mild Intense 

Legal intent 
21/23 
(91%) 

18/19 
(95%) 

20/20 
(100%) 

16/18 
(89%) 

17/27 
(63%) 

Infringing 
intent 

0/13 
(0%) 

4/14 
(29%) 

10/14 
(71%) 

7/15 
(47%) 

2/9 
(22%) 

Table 9: Legal purchase rates across treatment conditions and initial intent 

Our analysis of the initial intent expressed by participants is also consistent with that seen in 

experiment 1. Table 9 suggests that users who initially express intent to consume legally are 

significantly less likely to do so when placed in the infringing content manipulation (63%) than in 

either the other treatment conditions (p < 0.05 in all four t-tests performed). Likewise, users 

who initially express intent to consume infringing (pirated) content are significantly more likely 

to consume legally in the legal content manipulation (71%) than in the other treatment 



 

 

conditions (p < 0.1 in the t-test that compares the mean of this condition with the mean of the 

intense legal manipulation, and p < 0.05 in the other three t-tests performed). 

Finally, we use a logistic regression model to control for and analyze differences between groups 

based on observed characteristics. This model is similar to the model from Experiment 1, except 

that it includes dummy variables for the additional treatment conditions.  

Specifically, we use the following logistic regression model to control for observable participant 

characteristics: 

(5) 𝑙𝑜𝑔
𝑃𝑅 𝐿𝑒𝑔𝑎𝑙𝑖 

1 − 𝑃𝑅 𝐿𝑒𝑔𝑎𝑙𝑖 

= 𝛼 + 𝛽1 ∙MNIi + 𝛽2 ∙ NIi + 𝛽3 ∙MIi + 𝛽4 ∙ Ii + 𝛽𝑗 ∙

7

𝑗=5

DCi
j

+ 𝛽𝑗 ∙

10

𝑗=8

MCPi
j

+  𝛽𝑗 ∙

12

𝑗=11

ATPi
j

+ 𝛽13 ∙ intent + 𝜀𝑖  

where, 𝑀𝑁𝐼𝑖  is an indicator variable denoting whether participant 𝑖 was treated with the mild 

non-infringing search condition; 𝑀𝐼𝑖  is an indicator variable denoting whether participant 𝑖 was 

treated with the infringing search condition; and the other variables are the same as before. We 

present the results of this model in Table 10 below. 

The results in Table 10 are consistent with our means comparison results above in that the 

intense treatment variables are statistically different from the control condition and that all 

treatment variables have the expected signs (the non-infringing treatment condition increases 

the likelihood of purchasing legally and the infringing treatment condition decreases the 

likelihood of purchasing legally). As with experiment 1, the results show that participants who 

consumed infringing content in the past are less likely to purchase the movie legally, and that 

those who use a search term that reveals a clear non-infringing intent are more likely to 

purchase legally. 

In summary, the results from experiment 2 are consistent with those in experiment 1 in showing 

that search results can have a significant impact on whether consumers choose to acquire legal 

or infringing media content. In addition, experiment 2 further shows that these results hold for 

younger uses and that stronger treatments yield stronger responses. 



 

 

 
(1) (2) (3) (4) (5) 

Dependent variable: 
Acquired legally 

Basic 
Model 

Including 
Demographic 

Characteristics  

Including 
Media 

Consumption 
Preferences 

Including 
Attitude 
Towards 

Piracy 

Including 
Intent to 
Acquire 
Legally 

Constant 0.486 0.772 3.077** 3.265** 2.932** 

 
(0.318) (0.529) (1.215) (1.295) (1.430) 

Mild non-infringing mode 0.641 0.741 0.733 0.694 1.046** 

 
(0.460) (0.470) (0.479) (0.484) (0.529) 

Intense non-infringing mode 1.912*** 1.975*** 1.977*** 1.942*** 2.321*** 

 
(0.611) (0.620) (0.628) (0.641) (0.671) 

Mild infringing mode -0.576 -0.644 -0.700 -0.732 -0.727 

 
(0.438) (0.452) (0.462) (0.469) (0.528) 

Intense infringing mode -0.924** -0.932** -1.152** -1.228** -1.280** 

 
(0.428) (0.438) (0.469) (0.477) (0.530) 

Woman 
 

-0.626* -0.824** -0.940*** -1.178*** 

  
(0.321) (0.341) (0.350) (0.390) 

Younger (Age < 22) 
 

-0.462 -0.593* -0.518 -0.383 

  
(0.338) (0.349) (0.356) (0.394) 

Household size 
 

0.0843 0.0831 0.0409 -0.00624 

  
(0.0977) (0.1000) (0.102) (0.109) 

Income 
 

-0.0100 -0.0267 -0.0174 -0.119 

  
(0.118) (0.122) (0.123) (0.136) 

Time online 
  

-0.317* -0.319* -0.229 

   
(0.187) (0.190) (0.208) 

Acquires movies online 
  

-0.442* -0.209 -0.324 

   
(0.264) (0.284) (0.302) 

Movies per year 
  

0.0780 0.0928 0.132 

   
(0.146) (0.150) (0.165) 

Against piracy 
   

0.148 0.425 

    
(0.410) (0.448) 

Downloads infringing 
   

-0.968** -0.889* 

    
(0.416) (0.458) 

Non-infringing intent 
   

 3.127*** 

    
 (0.693) 

Number of obs. 234 234 234 234 234 

Pseudo R2       0.1321 0.1519 0.1755 0. 1987 0. 3107 

Table 10: Logistic regressions results 

Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 



 

 

Discussion 

As search engines become an increasingly important source of public information, they are 

being asked to play a stronger role in regulating what information is made available to the 

public. This role is seen in a variety of contexts including court ordered enforcement of an 

individual’s “right to be forgotten” in a variety of countries, the United States Federal Drug 

Administration and Department of Justice requirements that search engines ban sponsored 

search listings from non-FDA approved pharmacies, and efforts by Google to inform its 

consumers about hacked sites,10 insecure sites,11 or sites suspected of malware and phishing. 

Recently, many in the content industries have added pirated content to this list by asking 

whether changing the availability of pirated content in search results will change consumers’ 

choices for piracy versus legal consumption channels. 

The goal of this study is to assess whether search results can influence consumers choices for 

piracy versus legal consumption channels. To address this question, we used a unique 

experimental design to simulate consumers’ online movie search and consumption processes. 

Our custom search engine allowed us to experimentally manipulate the rank and positioning of 

pirate and legal links in the search results. 

We ran our experiment in two stages. In the first stage, we ran the experiment on a 

representative sample of the population recruited through an independent company 

maintaining large survey panels. We then exposed these users to three randomly assigned 

search conditions: a control condition which displayed search results from a major search engine, 

an infringing content treatment condition which artificially promoted infringing sites in the search 

results, and a legal content treatment condition which artificially promoted legal sites in the 

search results. In the second stage of the experiment we recruited a separate sample of college-

aged students (18-25 year olds) as participants, and added two additional treatment conditions 

to the experiment: a mild legal treatment condition and a mild infringing treatment condition.  

Our results in the first experiment with the general population show that 80% of users in the 

control condition choose to purchase content through legal channels. Relative to this baseline, 

we find that 94% of users in the legal treatment and 57% of users in the infringing treatment 

                                                           
10

 https://support.google.com/websearch/answer/190597?hl=en 
11

 http://googlewebmastercentral.blogspot.com/2014/08/https-as-ranking-signal.html 



 

 

purchase content through legal channels. We see similar results for the second experiment with 

a college-aged audience: 62% of users in the control condition purchase content versus 92% in 

the legal treatment and 39% in the infringing treatment. The second experiment also shows that 

stronger treatments lead to stronger outcomes: 76% of users purchase in the mild legal 

treatment (versus 92% in the legal treatment) and 48% of users purchase in the mild infringing 

treatment (versus 39% in the infringing treatment). 

We also find evidence that search results can even affect the behavior of users with a stated 

preference for legal or infringing content. When we classify user’s intentions based on their 

initial search terms, we found that users who initially express an intent to consume legally are 

less likely to purchase legally in the infringing treatment condition than in other conditions, and 

that users who initially express an intention to consume through pirate channels are more likely 

to consume legally when they are placed in the legal treatment condition. 

Together our results suggest that reducing the prominence of piracy links in search results can 

have a significant impact on consumer behavior, and may be a viable policy option in the fight 

against intellectual property theft. However we also note that more research is needed to shape 

such a policy. Identifying infringing content in real-time search results is different, and 

potentially more challenging, than identifying malware or phishing content. There also could be 

significant social costs from false positives, and opportunities for strategic manipulation of 

which sites and links are designated “infringing.” Any policy should take these issues into 

account, and may benefit from the lessons learned from similar issues in the context of the 

enforcement of DMCA notices.  

Our experiment is, of course, not without limitations. One possible limitation of our study is that 

while our custom search engine closely replicates the functionality of standard search engines, it 

still could be perceived differently by the users relative to a non-experimental setting. A second 

possible limitation is that the participants received a $20 Visa virtual card and were asked to 

follow a specific experimental task. While this is standard practice in the experimental 

economics literature, it may not necessarily reflect their normal movie consumption 

environment. For these two reasons we emphasize that, in interpreting our results, one should 

focus on the relative levels of sales/piracy between the control and treatment conditions as 

opposed to the absolute levels within any particular condition. Finally, we note that our 



 

 

experiment does not allow us to test potential longer-term changes in user behavior from 

manipulating search results. 
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